Blogia
estudiafacil

BIOLOGIA

El esqueleto humano

El esqueleto humano

El esqueleto humano es el conjunto total y organizado de piezas óseas que proporciona al cuerpo humano una firme estructura multifuncional (locomoción, protección, contención, sustento, etc.). A excepción del hueso hioides —que se halla separado del esqueleto—, todos los huesos están articulados entre sí formando un continuum, soportados por estructuras conectivas complementarias como ligamentos, tendones, músculos y cartílagos.

El esqueleto de un ser humano adulto tiene, aproximadamente, 206 huesos, sin contar las piezas dentarias, los huesos suturales o wormianoscráneo) y los huesos sesamoideos. El esqueleto humano participa con el 12 por ciento del peso total del cuerpo, así una persona que pesa 75 kilogramos, 9 kilogramos de ellos son por su esqueleto.

El conjunto organizado de huesos —u órganos esqueléticos— conforma el sistema esquelético, el cual concurre con otros sistemas orgánicos (sistema nervioso, sistema articular y sistema muscular) para formar el aparato locomotor.

El esqueleto óseo es una estructura propia de los vertebrados. En Biología, un esqueleto es toda estructura rígida o semirrígida que da sostén y proporciona la morfología básica del cuerpo, así, algunos cartílagos faciales (nasal, auricular, etc.) debieran ser considerados también formando parte del esqueleto.

 

 

la nanotecnologia

Los investigadores estiman que dentro de aproximadamente una década, será posible insertar un catéter en una gran artería y dirigirlo por el sistema circulatorio hasta el cerebro. Una vez llegue a su destino, un conjunto de nanocables se extenderían en un “ramo” con millones de diminutas sondas que podrían utilizar los 25.000 metros de capilares del cerebro como una vía para llegar a destinos específicos dentro del cerebro.

En sus experimentos los científicos maniobraron nanocables de platinio a través de los vasos sanguíneos en muestras de tejido humano y detectaron la actividad eléctrica de las células cerebrales activas colocadas al lado del tejido. Paralelamente crearon programas y soportes informáticos que podría funcionar como un tipo de convertido de analog a digital, convirtiendo señales emitidas por el cerebro en señales digitales y vice versa.

Desde entonces, los investigadores centran sus esfuerzos en cómo crear un conector suficientemente pequeño en una punta para llegar a cualquier neurona sin obstruir el flujo sanguíneo, pero suficientemente grande en la otra punta para conectar con instrumentos con el fin de grabar o enviar pulsos eléctricos. La solución que han encontrado el equipo ha sido sustituir los nanocables de platino por nanocables de polímeros, que además de ser mucho más baratos, pueden ser convertidos en cables mucho más finos y flexibles.

Actualmente los científicos investigan un proceso que permita la fabricación de nanocables de polímero que miden tan solo 100nm. Creen que un nanocable de este tipo podría ser “dirigible” y que se le podría guiar por uno de los vasos sanguíneos menores que salen de los más grandes.
Otra ventaja de este tipo de cables de polímero es que son biodegradable así que podrían ser utilizados para estudios cortos o diagnósticas, porque luego se decompondrían.

RAM-CMOS

RAM-CMOS es un tipo de memoria en que se guardan los datos que se pueden configurar del BIOS y contiene información básica sobre algunos recursos del sistema que son susceptibles de ser modificados como el disco duro, el tipo de disco flexible, etc. Esta información es almacenada en una RAM, de 64 bytes de capacidad, con tecnología CMOS, que le proporciona el bajo consumo necesario para ser alimentada por una pila que se encuentra en la placa base y que debe durar años, al ser necesario que este alimentada constantemente, incluso cuando el ordenador se encuentra apagado. Para ello antiguamente se usaba una batería recargable que se cargaba cuando el ordenador se encendía. Mas modernamente se ha sustituido por una pila desechable de litio (generalmente modelo CR-2032) y que dura de 2 a 5 años.

La información contenida en esta memoria es utilizada en la etapa de POST para establecer el diagnostico del sistema, al inicio del arranque del ordenador. En ese momento, entre otras tareas, se comprueba la integridad del contenido del CMOS y si dichos datos son incorrectos, se genera un error y el sistema solicita una respuesta al operador sobre la acción a seguir. Si de lo contrario el contenido es correcto, se utiliza la información almacenada para proseguir el arranque.

Básicamente es una memoria de acceso rápido que guarda los datos básicos para que el ordenador pueda encenderse.


 

Restablecimiento de la configuración de la CMOS:

Para acceder a la configuración de la BIOS cuando la máquina no funciona, es una medida de vez en cuando necesaria. En los ordenadores más antiguos con respaldo de batería de RAM, la eliminación de la batería y el cortocircuito de los terminales de la batería de entrada, durante un tiempo, hizo el trabajo en algunas máquinas más modernas. Ésta medida sólo se restablece el RTC. Algunas placas base ofrecen un jumper CMOS-reset o un botón de reinicio. En otros casos, el chip EEPROM ha de desoldar los datos en forma manual, por manos de un programador. A veces es suficiente motivo para el CLK o línea de DTA de la I²C bus de la EEPROM en el momento adecuado durante el arranque, esto requiere una cierta precisión en las piezas de soldadura SMD. Si la máquina le permite arrancar, pero no quiere que le permiten a la configuración de la BIOS, una posible recuperación es dañar la suma de comprobación CMOS, haciendo puerto directo escribe usando debug.exe, corrompiendo a algunos bytes de la suma de control de área protegida de la RAM CMOS.

BIOS

El Sistema Básico de Entrada/Salida o BIOS (Basic Input-Output System ) es un código de software que localiza y reconoce todos los dispositivos necesarios para cargar el sistema operativo en la RAM; es un software muy básico instalado en la placa base que permite que ésta cumpla su cometido. Proporciona la comunicación de bajo nivel, el funcionamiento y configuración del hardware del sistema que, como mínimo, maneja el teclado y proporciona salida básica (emitiendo pitidos normalizados por el altavoz de la computadora si se producen fallos) durante el arranque. El BIOS usualmente está escrito en lenguaje ensamblador. El primer término BIOS apareció en el sistema operativo CP/M, y describe la parte de CP/M que se ejecutaba durante el arranque y que iba unida directamente al hardware (las máquinas de CP/M usualmente tenían un simple cargador arrancable en la ROM, y nada más). La mayoría de las versiones de MS-DOS tienen un archivo llamado "IBMBIO.COM" o "IO.SYS" que es análogo al CP/M BIOS.

El BIOS (Basic Input-Output System) es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en memoria RAM. Posee un componente de hardware y otro de software, este último brinda una interfaz generalmente de texto que permite configurar varias opciones del hardware instalado en la PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Windows, GNU/Linux, Mac OS X, etc.).

El BIOS gestiona al menos el teclado de la computadora, proporcionando incluso una salida bastante básica en forma de sonidos por el altavoz incorporado en la placa base cuando hay algún error, como por ejemplo un dispositivo que falla o debería ser conectado. Estos mensajes de error son utilizados por los técnicos para encontrar soluciones al momento de armar o reparar un equipo. Basic Input/Output System - Sistema básico de entrada/salida de datos). Programa que reside en la memoria EPROM (Ver Memoria BIOS no-volátil). Es un programa tipo firmware. La BIOS es una parte esencial del hardware que es totalmente configurable y es donde se controlan los procesos del flujo de información en el bus del ordenador, entre el sistema operativo y los demás periféricos. También incluye la configuración de aspectos importantísimos de la máquina.

Firmware en tarjetas adaptadoras

Un sistema puede contener diversos chips con firmware BIOS. Además del BIOS de arranque situado en la disco duro y placa base.

El mercado de los BIOS de computadoras personales delega a terceros la producción del BIOS y un conjunto de herramientas. Estos se conocen como "proveedores independientes de BIOS" o IBV (del inglés independent BIOS vendor). Los fabricantes de placas madre después personalizan este BIOS según su propio hardware. Por esta razón, la actualización de el BIOS normalmente se obtiene directamente del fabricante de placas madre. El fabricante puede publicar actualizaciones del firmware por medio de su pagina web, pero una mala compatibilidad con el Hardware puede provocar un fallo que se expande por toda la placa base, inutilizándola por completo. Los principales proveedores de BIOS son American Megatrends (AMI), General Software, Insyde Software, y Phoenix Technologies (que compró Award Software International en 1998).

LOS ÁTOMOS Y SU ESTRUCTURA

En el átomo distinguimos dos partes: el núcleo y la corteza.
- El núcleo es la parte central del átomo y contiene partículas con carga positiva, los protones, y partículas que no poseen carga eléctrica, es decir son neutras, los neutrones. La masa de un protón es aproximadamente igual a la de un neutrón.
Todos los átomos de un elemento químico tienen en el núcleo el mismo número de protones. Este número, que caracteriza a cada elemento y lo distingue de los demás, es el número atómico y se representa con la letra Z.
- La corteza es la parte exterior del átomo. En ella se encuentran los electrones, con carga negativa. Éstos, ordenados en distintos niveles, giran alrededor del núcleo. La masa de un electrón es unas 2000 veces menor que la de un protón.
Los átomos son eléctricamente neutros, debido a que tienen igual número de protones que de electrones. Así, el número atómico también coincide con el número de electrones.
  
 Isótopos
La suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A. Aunque todos los átomos de un mismo elemento se caracterizan por tener el mismo número atómico, pueden tener distinto número de neutrones.
Llamamos isótopos a las formas atómicas de un mismo elemento que se diferencian en su número másico.
Para representar un isótopo, hay que indicar el número másico (A) propio del isótopo y el número atómico (Z), colocados como índice y subíndice, respectivamente, a la izquierda del símbolo del elemento.
Modelo de Dalton

 Fue el primer modelo atómico con bases científicas, fue formulado en 1808 por John Dalton, quien imaginaba a los átomos como diminutas esferas. Este primer modelo atómico postulaba:
  • La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
  • Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
  • Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
  • Los átomos, al combinarse para formar compuestos guardan relaciones simples.
  • Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
  • Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.

Sin embargo desapareció ante el modelo de Thomson ya que no explica los rayos catódicos, la radioactividad ni la presencia de los electrones (e-) o protones(p+).

Modelo de Thomson

 
 
 
 

Luego del descubrimiento del electrón en 1897 por Joseph John Thomson, se determinó que la materia se componía de dos partes, una negativa y una positiva. La parte negativa estaba constituida por electrones, los cuales se encontraban según este modelo inmersos en una masa de carga positiva a manera de pasas en un pastel (de la analogía del inglés plum-pudding model) o uvas en gelatina. Posteriormente Jean Perrin propuso un modelo modificado a partir del de Thompson donde las "pasas" (electrones) se situaban en la parte exterior del "pastel" (la carga positiva).


Detalles del modelo atómico

Para explicar la formación de iones, positivos y negativos, y la presencia de los electrones dentro de la estructura atómica, Thomson ideó un átomo parecido a un pastel de frutas. Una nube positiva que contenía las pequeñas partículas negativas (los electrones) suspendidos en ella. El número de cargas negativas era el adecuado para neutralizar la carga positiva. En el caso de que el átomo perdiera un electrón, la estructura quedaría positiva; y si ganaba, la carga final sería negativa. De esta forma, explicaba la formación de iones; pero dejó sin explicación la existencia de las otras radiaciones.

Modelo de Rutherford

 
 

Este modelo fue desarrollado por el físico Ernest Rutherford a partir de los resultados obtenidos en lo que hoy se conoce como el experimento de Rutherford en 1911. Representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico.

Rutherford predijo la existencia del neutrón en el año 1920, por esa razón en el modelo anterior (Thomson), no se habla de éste.

Por desgracia, el modelo atómico de Rutherford presentaba varias incongruencias:

  • Contradecía las leyes del electromagnetismo de James Clerk Maxwell, las cuales estaban muy comprobadas mediante datos experimentales. Según las leyes de Maxwell, una carga eléctrica en movimiento (en este caso el electrón) debería emitir energía constantemente en forma de radiación y llegaría un momento en que el electrón caería sobre el núcleo y la materia se destruiría. Todo ocurriría muy brevemente.
  • No explicaba los espectros atómicos.

Modelo de Bohr

 
 

Este modelo es estrictamente un modelo del átomo de hidrógeno tomando como punto de partida el modelo de Rutherford, Niels Bohr trata de incorporar los fenómenos de absorción y emisión de los gases, así como la nueva teoría de la cuantización de la energía desarrollada por Max Planck y el fenómeno del efecto fotoeléctrico observado por Albert Einstein.

“El átomo es un pequeño sistema solar con un núcleo en el centro y electrones moviéndose alrededor del núcleo en órbitas bien definidas.” Las órbitas están cuantizadas (los e- pueden estar solo en ciertas órbitas)

  • Cada órbita tiene una energía asociada. La más externa es la de mayor energía.
  • Los electrones no radian energía (luz) mientras permanezcan en órbitas estables.
  • Los electrones pueden saltar de una a otra órbita. Si lo hace desde una de menor energía a una de mayor energía absorbe un cuanto de energía (una cantidad) igual a la diferencia de energía asociada a cada órbita. Si pasa de una de mayor a una de menor, pierde energía en forma de radiación (luz).

El mayor éxito de Bohr fue dar la explicación al espectro de emisión del hidrógeno. Pero solo la luz de este elemento. Proporciona una base para el carácter cuántico de la luz, el fotón es emitido cuando un electrón cae de una órbita a otra, siendo un pulso de energía radiada.

Bohr no puede explicar la existencia de órbitas estables y para la condición de cuantización.

Bohr encontró que el momento angular del electrón es h/2π por un método que no puede justificar.

Modelo de Schrödinger: modelo actual

 
 

Después de que Louis-Victor de Broglie propuso la naturaleza ondulatoria de la materia en 1924, la cual fue generalizada por Erwin Schrödinger en 1926, se actualizó nuevamente el modelo del átomo.

En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, que es una extrapolación de la experiencia a nivel macroscópico hacia las diminutas dimensiones del átomo. En vez de esto, Schrödinger describe a los electrones por medio de una función de onda, el cuadrado de la cual representa la probabilidad de presencia en una región delimitada del espacio. Esta zona de probabilidad se conoce como orbital. La gráfica siguiente muestra los orbitales para los primeros niveles de energía disponibles en el átomo de hidrógeno.